

Para este tutorial, se trabajará con el siguiente plano:

×

*Clic en la imagen para ampliar.

Los parámetros son:

- Profundidad: 5mm
- Herramientas: 8mm y 6mm de diámetro
- RPM: 1200
- Velocidad de avance: 170 mm/min

Como primer punto, se puede hacer el marco, con los detalles de las orillas, seguido de los barrenos, luego los cortes diagonales y finalmente el agujero central.

Teniendo esto en mente, se pueden marcar los puntos en el plano:

×

Entonces, la secuencia de corte es la siguiente:

ML A P1	MCL A P7	MCL A P12	MCL A P17	MCL A P22
MCL A P2	MCL A P8	MCCA A P13	ML A P18	MCL A P23
MCL A P3	MCCA A P9	MCL A P14	MCL A P19	ML A P24
MCL A P4	MCL A P10	ML A P15	MCL A P20	MCL A P25
MCL A P5	MCCA A P11	MCL A P16	ML A P21	MCL A P26
MI a p27	ML A P35	ML A P43	MCL A P51	MCL A P59
MCL A P28	MCL A P36	MCL A P44	MCL A P52	ML A PS

MCL A P29	MCL A P37	MCCH A P45	MCL A P53
MCL A P30	MCL A P38	MCCH A P46	MCL A P54
ML A P31	ML A P39	MCL A P47	MCL A P55
MCL A P32	MCL A P40	MCL A P48	MCL A P56
MCL A P33	MCL A P41	MCL A P49	MCL A P57
MCL A P34	MCL A P42	MCL A P50	MCL A P58

*Recordar que, ML = Movimiento lineal sin corte, MCL = Movimiento de corte lineal, MCCH = Movimiento de corte circular con sentido horario, MCCA = Movimiento de corte circular con sentido anti horario, PS = Posición de seguridad para la herramienta.

Ahora, se calculan las coordenadas:

P1 X-5 Y1 Z70	P13 X1 Y63.5	P25 Z-5	P37 X86 Y48	P49 Y46
P2 Z-5	P14 Z3	P26 Z3	P38 Z3	P50 X63
P3 X99	P15 X12.5 Y67.5	P27 X14 Y32	P39 Y32	P51 Y48
P4 Y79	P16 Z-5	P28 Z-5	P40 Z35	P52 X37
P5 X1	P17 Z3	P29 X31.677 Y13	P41 X73.323 Y13	P53 Y38
P6 Y8.5	P18 Y12.5	P30 Z3	P42 Z3	P54 X64
P7 X8.5 Y1	P19 Z-5	P31 X14 Y48	P43 X34 Y40	P55 Y36
P8 X83.5	P20 Z3	P32 Z-5	P44 Z-5	P56 X36
P9 X99 Y16.5	P21 X87.5 Y67.5	P33 X31.677 Y67	P45 X66	P57 Y36
P10 Y63.5	P22 Z-5	P34 Z3	P46 X34	P57 X39
P11 X83.5 Y79	P23 Z3	P35 X73.323	P47 X66	P60 X0 Y0 Z70
P12 X7.5	P24 Y12.5	P36 Z-5	P48 X36	

Para obtener el punto en el eje X de los cortes en diagonal, es necesario hacer un cálculo extra, pues el plano no está acotado en todos los puntos. Se puede observar un ángulo de 45° y la distancia que se va a cortar, que es de 25mm.

Entonces, para encontrar el punto en X, utilizamos la fórmula Cos ? * D, donde:

- ? = ángulo
- D = distancia

Entonces, $\cos(45^{\circ})*25mm = 17.677 mm$

A lo anterior, se le suman los 14 mm que hay desde el punto donde se va a cortar, al borde, con lo que se tienen 31.677 mm.

Teniendo todo esto, se comienza a desarrollar el código CNC, que queda de la siguiente manera:

×

El resultado al correr el código en el simulador es:

×

Vídeo de la simulación: